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Abstract—A small deflection theory is presented for stresses and deformations in variable thickness
elastic annular sandwich plates that are symmetric about a middle surface. Both the energy
expression and the differential equations are developed. In this analysis, the face shects are treated
as membranes, the core is assumed to be inextensible in the thickness direction. to carry only
transverse shear stress on its cross sections normal to middle surface, and to be deformable in
transverse shear. The theory takes into account the contribution of the face sheet membrane forces
(by virtuc of their slopes) to the transverse shear.

1. INTRODUCTION

In stress analyzing homogencous plates of variable thickness, it is generally accepted({!] that
onc may continue to use the constant-thickness moment-curvature relations, provided that
at cach location, onc employs the local vilues of the plate stitfnesses based on the local
thickness. When dealing with sandwich plates of variable thickness, there has been a natural
inclination[2} to take a similar approach; that is, to use the constitutive equations of
constant-thickness sandwich plate theory[3], but allowing the transverse shear stiffness, the
flexural stiffnesses, and the twisting stiffness to vary with the plate coordinates in accordance
with the local thickness. This approach neglects two factors: (a) the transverse shear
components of the membrane stresses in the face sheets, which alter the transverse shear
carried by the core and, therefore, the transverse shear deformation; (b) the face sheet
membrane strains arising from transverse shear deformation of the core. References {4, 5]
showed that neglect of these factors in stress analysis of rectangular sandwich plates of
variable thickness can lead to significant errors, especially when the core has a low transverse
shear modulus and is highly tapered.

Stress analysis of annular sandwich plates of lincarly varying thickness is considered in
what follows here. The plate is assumed to be symmetric about a middle surface, and the
face sheets are assumed to be very thin compared to the core, so that they can be treated
as membranes. The core is assumed to be inextensible in the thickness direction, to carry
only transverse shear stress on its vertical cross sections, and to be deformable in transverse
shear. The thickness of the core and that of both face shecets are taken to be & and ¢,
respectively. Both faces are of the same material, different from that of the core. Loading
on the plate consists of a running vertical load ¢ as a function of r per unit of middle surface
area, resulting in an axisymmetric annular plate.

2. DISPLACEMENTS AND STRAINS

Upon the application of the load, the assumedly inextensible line element AB (shown
in Fig. 1) can experience the following movements which arc assumed to be small: (1)
transverse displacement w; (2) rotation € about its midpoint, in the vertical plane parallel
to the r-axis. These movements impart to point A the displacement u, along the upper face
sheet as
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Fig. I. Annular sandwich plate of linearly varying thickness.
h .
u, = 0 cos ¢+ w sin P, (n
This displacement gives rise to the strain
Il
du, h do . dw
b= = _cosp + bsin 2 -0 )
s 2 dr dr

in the upper fice sheet. The corresponding strain in the fower face sheet is —&,. The upper
face sheet circumferential strain is given by

£ =5 - (3)

Also w and @ give rise to the following transverse shear strain y,, in the core:

dw

i {. 4)

'/,_-

3. STRESSES AND STRESS RESULTANTS

In this analysis, the face sheets and the core are assumed to be isotropic, and the
following stress-strain relations are used.

For the face sheets
a, = E*e, +ve), o, = E*(c . +ve,). (5)
For the core
7. = Gy,. (6)

where E* = EX(1 —v7), E and v are the modulus of elasticity and Poisson’s ratio of the face
sheets, respectively, and G is the core shear modulus of elasticity.
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The stress resultants Q and M, are defined as the transverse shear and radial bending
moment per unit circumferential width, while M, is the circumferential bending moment
per unit radial width of the middle surface. These stress resultants are related to the stresses
carried by the core and the face sheets by the following relations:

Q = Quoe +20,t sin ¢
M, = —o,thcos ¢ (N
M, = —oa.thsec ¢

where Q... = t,.h is the shear carried by the core per unit width.

Substituting eqns (2)—(4) into eqns (5) and (6). then substituting the resulting equations
into eqns (7)., and upon nondimensionalization, we obtain the following dimensionless
force-displacement relations:

- div v b b
0= <ds -—5) +26H sin d)[(E yr sin 2¢>(7+ — sin 2¢> dg ¥ Fcos? ¢ J:I
= —H? cos ¢[(E IEI sin "¢) —g n2¢ %% +cos® ¢ g—ﬂ (8)

- , 3 h d
M,=~H®see ¢ é—v’-ism 2¢ (7+v»ﬁsm 2 ~+vcos ¢ —

d¢

where £ is the non-dimensional plate coordinate which is given by ¢ = r/b and H is the non-
dimensional plate thickness parameter defined as #H = hjh,, with A, being the plate thickness
at & = afb (inncer edge). For a lincar thickness variation, ff may be expressed as

H=1-f&E-albh) ab<i<
where f is the plate taper constant determined from the relation

P h—1
h(1 —a/b)

with /£ the known ratio of the inner plate thickness (¢ = «¢/b) to the outer plate thickness

(¢ = 1). The non-dimensional stress resultants and the displacements are defined as

} . ‘D 0
jo= Mo oD g 9P

== M, =— - a2
Y ‘ Py Pyb’

where P, is any reference quantity having the dimensions of pressure ; and D, is the plate
flexural stiffness at & = a/b given as

_ Eth:
CT(1-vY)’
R is defined as
Dy
R= G

and will be recognized as a dimensionless measure of the ratio of flexural stiffness to
transverse shear stiffness.
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The condition of equilibrium of an infinitesimal element of a tapered sandwich plate
leads to the following non-dimensional equilibrium equations :

<

j

9.
s
M,

ol B
o 4

©)

d¥d, M.—-M
+—=—-0=0

ds ¢

where L({) = g(r)/P,. The ordinary differential equations, eqns (8) and (9). together with
the boundary conditions at ¢ = a/b and & = |, govern w, §, 0, M., and M,.

4. POTENTIAL-ENERGY EXPRESSION
An expression can be obtained for the strain energy produced by the face sheet
membrane forces and the core shear force by considering the work done by these forces in

distorting a sandwich plate differential element. The strain energy of both face sheets is
given by

n 1
SEie = J J Hox +oe)r ds dx (10}
i i
where /s the length measured along the face sheets. The core strain energy is given by
i n h
SE e = - J j ht,.y,.r dr da. {(H
2 4] g3

Elimination of ds by use of ds = sec ¢ dr, und the summation of strain cnergy duc to
bending, eqn (10), and strain energy due to shear, eqn (11), gives the total plate strain
energy expression V,

[
’
V,= EnJ {tr sec Ploe,+a.e)+ ,;izr,_.y,,} dr.
Elimination of a,, o, and t,. by means of eyns (3) and (6) gives
. g , Woorh
V,=2n trsec ¢ EX(e]+2vee. +el)+ 5 Gyr ot dr.

The potential encrgy acquired by the external force, ¢. in the course of the lateral deflection

is given by V,
V, = —J‘j gr dr do.
A

The total potential encrgy ¥ of the system comprising the plate and the force ¢ acting
on it is the sum of the strain encrgy V), and the potential encrgy of the external foree V,

h
» aoorh
V=2n ‘[ {tr scc ¢ E*(e; +2vee, +60) + 5 Gyr— qwr} dr.

Eliminating ¢,. &, and y,. by means of eqns (2)-(4), and nondimensionalizing the resulting
expression, yields
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S dd )2 (dw): df dw dé
V= Al =< | +(C+ — | +B— —+(D-8)F —
Lb { (d; CHO\E¢) Pz PP g

+(£—2C—2K)93—f +(C-—E+F+K)(F—2Lg'»€} d¢ (12)
S

where
A=H¢cos’ ¢
B = 2Hb¢ sin 2¢ cos ¢
C = 26%¢ sin ¢ sin 2¢ (13)
D =2vH? cos ¢
E = 4vbH sin ¢
H? ¢ - D,
F——Fsecqb, K-T' V_Pf,b"nV'

The above expression applies when the boundary reactions do no work and, therefore,
acquire no potential energy in the course of the plate’s deflection. Equation (12) is, therefore,
applicable when the edges of the plate are free, simply supported, or clamped.

The mutual consistency of the differential equations and the energy expressions is
confirmed by means of the calculus of variations, and is presented in the Appendix.

S. ILLUSTRATIVE APPLICATION

In this section, we present the solution for an annular sandwich plate with lincar
thickness variation which is clamped at the inner edge and is free at the outer edge. b/h, is
taken to be 7 and b/a = 4. Poisson’s ratio of the face sheets is assumed to be 0.3. The
loading consists of running uniform vertical load ¢ = P, per unit middle surface area. The
solution to eqns (8) and (9) is obtained by the finite difference technique with the boundary
conditions replacing the equilibrium equations at the boundary grid points.

Figure 2 shows the non-dimensional deflection curve as a function of & for different
values of R. The thickness at the inner edge is twice that of the outer edge, h = 2, where A
is defined as the ratio of the inner edge thickness to the outer edge thickness. R = 0.4

.30,
Improved Theory

----- Simple Theory -

%!

Fig. 2. Non-dimensional deflection as a function of & with A = 2.



318 N. PayDpar
367 Improved Theory
“““ Simple Theoty  _ - -
.30 -
-
-
-~
24f .~ R=0.4
/
Wmax
.18+
124 - R=0.1
R=0.0
.06
0 v - v v
1 1.8 2.6 3.4 4.2 5

h
Fig. 3. Maximum non-dimensional deflection as a function of 4.
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Fig. 4. Non-dimensional core shear stress as a function of §.

corresponds, for example, to a core shear modulus of 196 MPu in a plate with 0.25 cm thick
faces, £=200 GPa, h, = 7.14 ¢cm, ¢ = 12.5 ¢cm, and h = 50 cm. This figure contains two
sets of results: (a) results obtained by present (““Improved™) theory, (b) results based on
the locally-constant-thickness sandwich plate theory (which we label “"Simple™ theory for
the lack of a better word). It is seen that the two theorics agree very closely, as they should,
when R = 0 (core not deformable in transverse shear), but can differ appreciably when
R # 0. Figure 3'shows plate maximum deflection as a function of /. It will be noted that
the low R and high R curves have opposite trends as f increased from | to 5. That is because
increasing A (i.c. increasing the thickness taper) has two opposite effects: by reducing the
thickness, the face sheet stresses are increased, thereby increasing the bending deflection.
Atthe same time, the participation of the face sheets in resisting transverse shear is increased,
which reduces the core shear stresses and, therefore, the deflection due to shear. When the
core transverse shear stiffness is low (R = J.4), the sccond effect predominates, while when
the core transverse shear stiffness is high (R = 0 or 0.1), the first cffect predominates. Figure
4 shows the non-dimensional core shear stress, 7,, = 1,4,/ Pybh, as a function of & for different
values of /.

We have no experimental results to compare with the above theoretical results.
However, tests on variable thickness sandwich beams, reported by Lu[6], tend to confirm
the main premiscs of the present analysis. A comparison has been made in Ref. [5] between
the experimental results of Ref. [6] and the theoretical predictions of the improved and the
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simple theory. It is seen that the improved theory is in much better agreement with experi-
ment than is the simple theory, especially for the higher values of taper constant .

6. CONCLUSION

A small deflection theory is presented for the stresses and deformations in variable
thickness elastic annular sandwich plates that are symmetric about a middle surface. In this
analysis, the face sheets are treated as membranes, the core is assumed to be inextensible
in the thickness direction. and to be deformable in transverse shear. The theory takes into
account the contribution of the face sheet membrane forces (by virtue of their slopes) to
the transverse shear.

Numerical comparisons showed that an alternate theory, based on the assumptions
that the constant-thickness constitutive equations are valid locally, can be appreciably in
error, although such a theory is quite acceptable for homogeneous plates of variable
thickness.
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APPENDIX: DERIVATION OF EQUILIBRIUM EQUATIONS AND GENERAL BOUNDARY
CONDITIONS BY A VARIATIONAL METHOD

The conditions that must be satistied if the total potential energy V of the system is to be a4 minimum are
considered here. By the caleulus of variations, minimization of V requires the vanishing of the first variation 6V,
The first variation can be evaluated from eqn (12) as

1
o‘F‘='[ {[ Adf+ B:J}'; (D~ 13)0] — .)(T)+[ 3{—I+’(C+K)—+(E 2C- "K)(I] — (W)
73
dd . Lodw . .
+ (D—B)J—;+(£‘—2(,-2I\)E;+2(C—-E+F+K)0 ST-2LE 0wy dE. (Al
S Y

Those terms in the above expression that contain derivatives of W and 80 can be integrated by parts so as to
reduce the order of the derivatives

ds

+'[ { [ +2(C+K) --+(L —-ZK)J]—-ZL.E}O'W} dz

+ [2,4 d + Bq“; +(D- B)J] sd
d¢ dé

d0 ;
dt‘:[ {{ [ +Bd--+(D 3)0} (D—B)a;+(E—2C—2K)%;+2(C—E+F+I\’)0}M}df
LS LY

1
[B:0+’(C+A) — +(E- ZK)J](SWL .

s &

In order for 67 as given by the above expression to be zero for all possible values of 8w and 64, the various
integrals must individually be zero. The following differential equations result from equating the line integrals to
7ero

%{—H’ cos ¢[(§ - f—,’;sm "¢)IT+ gsm ..:b +cos ¢ J]} { H? cos d’[(é - }—6 sin 2¢>0'
1
+ I—,’;sm 2 — +cos ¢ ﬂ]} %{ H?cos ¢ [(E - g—, sin 7¢)(7+ ffi sin 74;-« +c dtg—i]
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F N it

{g(ét (7) 25hH sin d{(: - }—i sin ‘¢)f’+ g sin ’qb e +~cos & dy:}}éu‘

By virtue of eqns (8), the above expressions can be rewritten as

=0

-

b

dMl, M - H

dg -0=0

¢,

M =0 or M=0

G=0 or ow=0,

(AD)

(A3

{Ad)

{A5)

(A6)

(AT)

(A%)

(A9

Equations (A6) and {A7) are the differential equations that must be satistied if the potentiad energy is to be a
minimum. They will be recognized as the equations of equilibrium, egns (9). Equations (A8) and (A9) are the

boundary conditions that must be satistied it the potential encrgy is to be a minimum.



